skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Debnath, Minakshi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep learning models rely heavily on extensive training data, but obtaining sufficient real-world data remains a major challenge in clinical fields. To address this, we explore methods for generating realistic synthetic multivariate fall data to supplement limited real-world samples collected from three fall-related datasets: SmartFallMM, UniMib, and K-Fall. We apply three conventional time-series augmentation techniques, a Diffusion-based generative AI method, and a novel approach that extracts fall segments from public video footage of older adults. A key innovation of our work is the exploration of two distinct approaches: video-based pose estimation to extract fall segments from public footage, and Diffusion models to generate synthetic fall signals. Both methods independently enable the creation of highly realistic and diverse synthetic data tailored to specific sensor placements. To our knowledge, these approaches and especially their application in fall detection represent rarely explored directions in this research area. To assess the quality of the synthetic data, we use quantitative metrics, including the Fréchet Inception Distance (FID), Discriminative Score, Predictive Score, Jensen–Shannon Divergence (JSD), and Kolmogorov–Smirnov (KS) test, and visually inspect temporal patterns for structural realism. We observe that Diffusion-based synthesis produces the most realistic and distributionally aligned fall data. To further evaluate the impact of synthetic data, we train a long short-term memory (LSTM) model offline and test it in real time using the SmartFall App. Incorporating Diffusion-based synthetic data improves the offline F1-score by 7–10% and boosts real-time fall detection performance by 24%, confirming its value in enhancing model robustness and applicability in real-world settings. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Falls are the second leading cause of unintentional injury deaths worldwide. While numerous wearable fall detection devices incorporating AI models have been developed, none of them are used successfully in a fall detection application running on commodity-based smartwatches in real time. The system misses some falls, and generates an annoying amount of False Positives for practical use. We have investigated and experimented with an LSTM model for fall detection on a smartwatch. Even though the LSTM model has high accuracy during offline testing, the good performance of offline LSTM models cannot be translated to the equivalence of real-time performance. Transformers, on the other hand, can learn long-sequence data and patterns intrinsic to the data due to their self-attention mechanism. This paper compares three variants of LSTM and two variants of Transformer models for learning fall patterns. We trained all models using fall and activity data from three datasets, and the real-time testing of the model was performed using the SmartFall App. Our findings showed that in the offline training, the CNN-LSTM model was better than the Transformer model for all the datasets. However, the Transformer is a preferable choice for deployment in real-time fall detection applications. 
    more » « less
  3. Introduction:There is increasing interest in developing mathematical and computational models to forecast adverse events in physiological systems. Examples include falls, the onset of fatal cardiac arrhythmias, and adverse surgical outcomes. However, the dynamics of physiological systems are known to be exceedingly complex and perhaps even chaotic. Since no model can be perfect, it becomes important to understand how forecasting can be improved, especially when training data is limited. An adverse event that can be readily studied in the laboratory is the occurrence of stick falls when humans attempt to balance a stick on their fingertips. Over the last 20 years, this task has been extensively investigated experimentally, and presently detailed mathematical models are available. Methods:Here we use a long short-term memory (LTSM) deep learning network to forecast stick falls. We train this model to forecast stick falls in three ways: 1) using only data generated by the mathematical model (synthetic data), 2) using only stick balancing recordings of stick falls measured using high-speed motion capture measurements (human data), and 3) using transfer learning which combines a model trained using synthetic data plus a small amount of human balancing data. Results:We observe that the LTSM model is much more successful in forecasting a fall using synthetic data than it is in forecasting falls for models trained with limited available human data. However, with transfer learning, i.e., the LTSM model pre-trained with synthetic data and re-trained with a small amount of real human balancing data, the ability to forecast impending falls in human data is vastly improved. Indeed, it becomes possible to correctly forecast 60%–70% of real human stick falls up to 2.35 s in advance. Conclusion:These observations support the use of model-generated data and transfer learning techniques to improve the ability of computational models to forecast adverse physiological events. 
    more » « less
  4. Falls in the elderly are associated with significant morbidity and mortality. While numerous fall detection devices incorporating AI and machine learning algorithms have been developed, no known smartwatch-based system has been used successfully in real-time to detect falls for elderly persons. We have developed and deployed a SmartFall system on a commodity-based smartwatch which has been trialled by nine elderly participants. The system, while being usable and welcomed by the participants in our trials, has two serious limitations. The first limitation is the inability to collect a large amount of personalized data for training. When the fall detection model, which is trained with insufficient data, is used in the real world, it generates a large amount of false positives. The second limitation is the model drift problem. This means an accurate model trained using data collected with a specific device performs sub-par when used in another device. Therefore, building one model for each type of device/watch is not a scalable approach for developing smartwatch-based fall detection system. To tackle those issues, we first collected three datasets including accelerometer data for fall detection problem from different devices: the Microsoft watch (MSBAND), the Huawei watch, and the meta-sensor device. After that, a transfer learning strategy was applied to first explore the use of transfer learning to overcome the small dataset training problem for fall detection. We also demonstrated the use of transfer learning to generalize the model across the heterogeneous devices. Our preliminary experiments demonstrate the effectiveness of transfer learning for improving fall detection, achieving an F1 score higher by over 10% on average, an AUC higher by over 0.15 on average, and a smaller false positive prediction rate than the non-transfer learning approach across various datasets collected using different devices with different hardware specifications. 
    more » « less